
OVERVIEW 
 
PASTERP is a PASCAL-like interpreter, with an embedding interface to Borland PASCAL 
programs. Now you can enhance your applications by providing an easy to use and powerful 
extension language to your projects.    
 
The language parsed by the interpreter is a subset of PASCAL, with syntax enhancements 
that make it easier to read. In most of the constructs the PASTERP language is also more 
forgiving than PASCAL.    
 
This document describes the language syntax, the supported run-time library, and the 
interface provided to embed the language in your application projects.    
 
Related Topics :    
 PASTERP Language 
 PASTERP Run-Time Library 
 PASTERP <-> Borland PASCAL Interface 
 



PASTERP Language 
 
The PASTERP Language is based on PASCAL with some enhancements that simplify parsing 
(both for the machine and the users), and is more forgiving than PASCAL.    
 
The language support is described in the following sections :    
 
 Statements 
 Varaibles 
 Expressions 
 
To understand the language capabilities please refer to the Run-Time Library as well.    
 



STATEMENTS 
 
The following statements are recognized in the PASTERP Language :    
 
 Assignment Statement 
 CONTINUE Statement 
 FOR Statement 
 GLOBAL Statement 
 IF Statement 
 LOCAL Statement 
 Procedure Call Statement 
 Procedure/Function Definition Statement 
 READLN Statement 
 READ Statement 
 REPEAT Statement 
 RETURN Statement 
 WHILE Statement 
 WRITELN Statement 
 WRITE Statement 
 



GLOBAL Statement 
 
The GLOBAL statement is used to define a global variable, that can be accessed from all the 
procedures of the PASTERP program being executed. It is important to call the GLOBAL 
statement only ONCE, or the interpreter will not be able to recognize it as a valid variable 
definition.    
 
It is a good idea to call this statement in an initialization routine that can be modified by 
your users.    
 
The GLOBAL statement syntax is as follows :    
 
GLOBAL Var-Name : Var-Type [= Initialization-Value] [;] 
              [Var-Name ... ] 
ENDVAR 
 
Where Var-Name is the name of the variable, Var-Type is the type of the variable, and 
optionally, an Initialization-Value can be specified, using an expression.    
 
Multiple Var-Names can be specified, each one of them will be allowed only if there is no 
previous variable defined with the same name.    
 
Please note that since PASTERP is an interpreted language, the optional Initialization-Value 
can be an expression that references functions, variables etc.., however, if you want to 
translate your PASTERP sources to PASCAL, you should restrict yourself to constant 
Initialization-Values only.    
 
Related Topics :    
 LOCAL Statement 
 Expressions 
 Variables 
 



LOCAL Statement 
 
The LOCAL statement is used to define a Local variable to the currently executing procedure,
that variable can NOT be accessed from any other procedure of the PASTERP program being 
executed. It is important to call the LOCAL statement only ONCE in the procedure, or the 
interpreter will not be able to recognize it as a valid variable definition.    
 
It is a good idea to call this statement in an initialization part of your routine, and use it later.
The LOCAL statement is closer to the C/C++ variable definition that is performed in the code
(and not out of it as in PASCAL), however, unlike C/C++, the variable is not local to a block, 
but to the entire procedure, from the point of it's declaration.    
 
The LOCAL statement syntax is as follows :    
 
LOCAL|VAR Var-Name : Var-Type [= Initialization-Value] [;] 
              [Var-Name ... ] 
ENDVAR 
 
For easier translations from PASCAL to PASTERP, the keyword VAR can be used instead of 
LOCAL.    
 
Where Var-Name is the name of the variable, Var-Type is the type of the variable, and 
optionally, an Initialization-Value can be specified, using an expression.    
 
Multiple Var-Names can be specified, each one of them will be allowed only if there is no 
previous variable defined with the same name.    
 
Please note that since PASTERP is an interpreted language, the optional Initialization-Value 
can be an expression that references functions, variables etc.., however, if you want to 
translate your PASTERP sources to PASCAL, you should restrict yourself to constant 
Initialization-Values only.    
 
Related Topics :    
 GLOBAL Statement 
 Expressions 
 Variables 
 



WRITE Statement 
 
The WRITE statement is used to write a list of expressions. This statement is very close to 
the PASCAL Write procedure.    
 
The WRITE statement syntax is :    
 
WRITE([File, ]Expr-1 [[,] Expr-2 [[,] Expr-3]])[;] 
 
Where Expr-1, Expr-2 .. are expressions that produce an output. In this version of PASTERP 
these are Numeric and String Expressions.    
 
The optional File parameter is the name of the file that the output will be directed to. In this 
version of PASTERP, only TEXT files are supported.    
 
Related Topics :    
 WRITELN Statement 
 Expressions 
 



WRITELN Statement 
 
The WRITELN statement is used to write a list of expressions. This statement is very close to 
the PASCAL Writeln procedure. This statement will write a newline character at the end of 
the arguments list.    
 
The WRITELN statement syntax is :    
 
WRITELN([File, ]Expr-1 [[,] Expr-2 [[,] Expr-3]])[;] 
 
or    
 
WRITELN[;] 
 
Where Expr-1, Expr-2 .. are expressions that produce an output. In this version of PASTERP 
these are Numeric and String expressions.    
 
The optional File parameter is the name of the file that the output will be directed to. In this 
version of PASTERP, only TEXT files are supported.    
 
Related Topics :    
 WRITE Statement 
 Expressions 
 



Assignment Statement 
 
The ASSIGNMENT statement assigns a value to a variable. The variable to be assigned is 
called the LVALUE of the assignment, and the expression that is being evaluated is called the
RVALUE of the assignment.    
 
The ASSIGNMENT statement Syntax is as follows :    
 
Variable := Expression 
 
Where Variable is a variable defined before, as a GLOBAL or LOCAL variable, or was defined 
by the application program that set the Variable.    
 
The Expression is a Numeric/String/Logical expression that is legal for the LVALUE variable it 
will be assigned to.    
 
Related Topics :    
 Expressions 
 Varaibles 
 PASTERP <-> Borland PASCAL Interface 
 



IF Statement 
 
The IF statement is used to choose code execution according to a set of rules that is correct 
(evaluated to TRUE) when the IF statement is executed. This statement is semantically equal
to the PASCAL IF statement.    
 
The IF statement syntax is :    
 
IF (Conditional-Expression) [THEN] 
                ... commands to do if conditional-expression is evaluated to TRUE 
[ELSE 
                ... commands to do if conditional-expression is evaluated to FALSE] 
ENDIF 
 
Where Conditional-Expression is a logical expression that can be evaluated to a Boolean 
value.    
 
Unlike in PASCAL, every IF statement must end with the ENDIF keyword. An optional ELSE 
keyword defines the end of the statement block that should be evaluated when the 
Conditional-Expression is evaluated to TRUE, and the start of the statement block that 
should be executed if the Conditional-Expression is evaluated to FALSE.    
 
Related Topics :    
 Expressions 
 



WHILE Statement 
 
The WHILE statement is used to create loops that are executed during the time a specific 
condition is true. The condition is re-evaluated at the beginning of the loop, and if the logic 
evaluation returns TRUE, a block of commands is executed, until a ENDWHILE (or WEND) 
keyword is reached.    
 
The WHILE statement syntax is :    
 
WHILE (Conditional-Expression) 
                ... block of statements 
ENDWHILE 
 
Where Conditional-Expression is a logical expression that can be evaluated to a Boolean 
value.    
 
Related Topics :    
 Expressions 
 REPEAT Statement 
 FOR Statement 
 



FOR Statement 
 
The FOR statement is used to loop through a block of instructions a fixed number of times.    
 
The Start/End and Step conditions of the loop are evaluated only once, when the FOR 
statement starts, this is different from the WHILE and REPEAT statement that are re-
evaluated with each iteration.    
 
This statement is close to the standard PASCAL FOR statement. It adds a STEP parameter 
that defines how the loop's control variable is incremented/decremented. Notice that 
PASTERP Pascal can use REAL (Floating Point) Variables as control variables.    
 
The FOR statement syntax is :    
 
FOR Control-Variable := Start-Value TO|DOWNTO End-Value [STEP Step-Value] 
                ... Block of statement 
ENDFOR 
 
Where Control-Variable is the Numeric variable that will be used as a control variable for the 
loop, Start-Value is the initial value assigned to the control variable, End-Value is the value 
that the Control-Variable will be tested against. If the optional Step-Value is supplied, this is 
the value that will be added to the Control-Variable.    
 
The TO and DOWNTO keywords are used for the same purpose, if the STEP parameter is 
specified, the Step-Value sets the value that will be added to the Control-variable. If the STEP
parameter is not supplied, using TO will assign 1.0 to the Step-Value, and DOWNTO will 
assign -1.0 to this value.    
 
Related Topics :    
 Expressions 
 REPEAT Statement 
 WHILE Statement 
 



REPEAT Statement 
 
The REPEAT statement is used to create loops that are executed during the time a specific 
condition is false. The condition is re-evaluated at the end of the loop, and if the logic 
evaluation returns FALSE, a block of commands is executed.    
 
This statement is different from the WHILE statement, because the command block will be 
performed at least once, until the first time the conditional-expression is evaluated. In the 
WHILE statement, the command block might not be executed even once.    
 
The REPEAT statement syntax is :    
 
REPEAT 
                ... block of statements 
UNTIL (Conditional-Expression) 
 
Where Conditional-Expression is a logical expression that is re-evaluated at the end of the 
loop, and the loop is executed while it is    evaluated to FALSE.    
 
Related Topics :    
 Expressions 
 WHILE Statement 
 FOR Statement 
 



READ Statement 
 
The READ statement is used to get input from the keyboard, or a file. Unlike the PASCAL 
READ statement, PASTERP READ statement receives only one argument to read.    
 
The READ statement syntax is : 
 
READ([File, ] Variable)[;] 
 
Where Variable is the variable the data will be read into. The optional File parameters is the 
source file of the input, if no file is specified, the input is received from the keyboard, 
otherwise, it arrives from the specified file. In this version of PASTERP the only files 
supported are TEXT files.    
 
Related Topics :    
 
 Variables 
 READLN Statement 
 



READLN Statement 
 
The READLN statement is used to get input from the keyboard, or a file. Unlike the PASCAL 
READLN statement, PASTERP READLN statement receives only one argument to read.    
 
The READLN statement syntax is : 
 
READLN([File, ] Variable)[;] 
 
Where Varaible is the varaible the data will be read into. The optional File parameters is the 
source file of the input, if no file is specified, the input is received from the keyboard, 
otherwise, it arrives from the specified file. In this version of PASTERP the only files 
supported are TEXT files.    
 
Related Topics :    
 
 Variables 
 READ Statement 
 



Procedure Call Statement 
 
PROCEDURE (and FUNCTIONS) CALL are recognized as statements by the PASTERP 
language. When a procedure call is recognized, the PASTERP interpreter passes control to 
the specified procedure/function, and continues execution in that function/procedure. When 
the called procedure exits, execution is resumed after the call to the procedure/function.    
 
The PROCEDURE/FUNCTION CALL syntax is :    
 
Procedure-Name[(Parameter-1, Parameter-2)] 
 
Where Procedure-Name is the name of the procedure/function, that had been defined either 
by the calling application, or in the PASTERP code.    
 
The optional Parameters are the parameters defined in the procedure definition.    
 
Related Topics :    
 Procedure/Function Definition 
 



RETURN Statement 
 
The RETURN statement is used to exit a procedure/function, and according to the 
function/procedure return type, return a value.    
 
The RETURN statement is close to the C/C++ statement, that has no equivalent in PASCAL.    
 
An alternative to the RETURN statement is to set the function value, by assignment, end exit
when the ENDPROC keyword is reached, this method is equivalent to the PASCAL return 
model.    
 
The RETURN statement syntax is : 
 
RETURN [Expression] [;] 
 
Where Expression is the expression that defines the value the function will return, if the 
function/procedure does not return a value (return type = void), the expression is not 
necessary.    
 
An alternate syntax is : 
 
FUNCTION myfunc(Parameter-List) : Return-Type 
 [... some code] 
 myfunc := expression 
 [... some code] 
ENDPROC 
 
Related Topics :    
 Expressions 
 Procedure/Function definition 
 



Procedure/Function Definition
Statement 

 
There are four (4) types of procedures/functions that PASTERP recognizes, of these two are 
implemented/registered by the Host Application, one is implemented by PASTERP code, and 
one will be implemented in a future version of PASTERP by dynamic binding.    
 
This section describes procedures and functions definition that are defined in PASTERP 
source. The other types are defined elsewhere in this document.    
 
Procedures or functions that are defined in PASTERP source must be defined on a new source
line. You can not start a procedure/function definition on a line that has any previous 
statement, or even remarks.    
 
The following syntax is used to define procedures and functions : 
 
PROCEDURE Proc-Name[(Parameters-List)] [BEGIN] 
 .. procedure code 
ENDPROC 
 
or    
 
FUNCTION Func-Name[(Parameter-List)] : Return-Type [BEGIN] 
 .. function code 
ENDPROC 
 
Where Proc-Name/Func-Name is the name of the procedure. Please note that this name must
be unique, or a problem might occur.    
 
The optional Parameter-List is a list of parameters that should be passed to the 
procedure/function, using the following syntax :    
 
Parameter-Name : Parameter-Type [, Parameter-Name : Parameter-Type [..]] 
 
Where Parameter-Name is the name the parameter will be called in the procedure, and 
Parameter-Type is the type of the parameter.    
 
Return-Type in a FUNCTION definition is the type of the result returned by the function.    
 
Please note that unlike in PASCAL, procedures and functions that are recognized in 
expressions/statements even if they are declared and defined after the procedure/function 
call. This can be done, because the interpreter updates the internal procedure table while it 
loads the source file to be interpreted.    
 
Another important issue to notice, is that PASTERP procedures/functions CANNOT be nested 
in other procedures/functions. This is more like the C/C++ functions scope rules.    
 
Related Topics :    
 RETURN Statement 
 



CONTINUE Statement 
 
The CONTINUE statement is used to start a new iteration of a WHILE, REPEAT or FOR 
statement. The CONTINUE statement is evaluated as a ENDWHILE, UNTIL or ENDFOR 
keyword is for the relevant statements.    
 
If no loop is defined, CONTINUE will result in an error code.    
 
The CONTINUE syntax is : 
 
CONTINUE 
 
Related Topics :    
 WHILE Statement 
 FOR Statement 
 REPEAT Statement 
 



VARIABLES 
 
PASTERP variables must be declared before they can be used. Variables can be declared 
either in the PASTERP source code, or in the host application.    
 
PASTERP variables are either GLOBAL, where every procedure can access them (they have a 
global scope), or LOCAL to the procedure that executes them.    
 
GLOBAL variables can be defined either from the PASTERP source, or the host application 
code, LOCAL variables can be defined only in the PASTERP source code, or as parameters to 
procedures that can be defined by the host application that registers the procedure/function.
 
This version of PASTERP supports only the built-in variables types. New types can not be 
created. Arrays and pointers are not supported in this version of PASTERP.    
 
The supported variable types are :    
 
BYTE                        - Equal to PASCAL BYTE, a 0-255 integer type. 
INTEGER                  - Equal to PASCAL INTEGER, a -32K .. + 32K integer type. 
WORD                        - Equal to PASCAL WORD, a 0 .. 64K integer type. 
LONGINT                  - Equal to PASCAL LONGINT, a -2 Billion .. + 2 Billion    
                                                                                      integer type. 
REAL                        - Equal to PASCAL REAL, a 2.9*10-39 .. 1.7*10.38 float. 
STRING                    - Equal to PASCAL STRING, a 255 Character dtring. 
PCHAR                      - Equal to PASCAL PCHAR, an AsciiZ pointer. 
BOOLEAN                  - Equal to PASCAL BOOLEAN, a TRUE/FALSE logical variable. 
TEXT                        - EQUAL to PASCAL TEXT, a text mode file. 
 
Please note that while PASTERP does not support most of the other PASCAL types, the 
keywords for all the standard PASCAL types are reserved by PASTERP for a future release 
that might support them.    
 



EXPRESSIONS 
 
PASTERP supports expressions that are either Numeric, String or Logical expressions. These 
expressions are evaluated by the interpreter according to the type of function return, 
parameter or variable assignment.    
 
In PASTERP all Numeric expressions are evaluated as REAL expressions, and data is 
converted back and forth if needed between REALs and the Variable/ Parameter used.    
 
All PASTERP String expressions are evaluated as AsciiZ expressions, and data is converted 
back and forth if needed between AsciiZ and STRING variables/parameters.    
 
The Expressions Definitions are : 
 
 Numeric Expressions 
 String Expressions 
 Logical (Boolean) Expressions 
 



Numeric Expressions 
 
In PASTERP all Numeric expressions are evaluated as REAL expressions, and data is 
converted back and forth if needed between REALs and the Variable/ Parameter used.    
 
The PASTERP Numeric Expressions will be described in a simple structure :    
 
A Numeric Expression supports the standard math operations (+, -, *, /, %) it also supports 
the POWER operator, parenthesis, and unary minus.    
 
The Primitive elements of a numeric expression are numeric constants, variables of a 
numeric type, and functions that return a numeric value.    
 
The operators in decreasing evaluation order are :    
 
 Primitives 
 Parenthesis 
 Unary Minus 
 POWER 
 Mul (*), Div (/), Mod (%) 
 Add (+), Sub (-) 
 
Operators on the same line are left associative.    
 
Related Topics :    
 
 Variables 
 String Expressions 
 Logical (Boolean) Expressions 
 



String Expressions 
 
All PASTERP String expressions are evaluated as AsciiZ expressions, and data is converted 
back and forth if needed between AsciiZ and STRING variables/parameters.    
 
String expressions support string concatenation using the + operator.    
 
The Primitive elements of a string expression are string constants, variables of a string type, 
and functions that return a string value.    
 
Please note that you can concatenate AsciiZ (PCHAR) and STRING type strings.    
 
String Constants are delimited either by single or double quotes, the matching quote is 
determined by the first quote, this way it is easy to create strings that include the "other" 
quote character. Like PASCAL, PASTERP Strings can also include the quote character by 
doubling it.    
 
e.g. - "This string has a single quote right here : ' "    
 
e.g. - 'And this one has a double quote here : " '    
 
Related Topics :    
 
 Variables 
 Numeric Expressions 
 Logical (Boolean) Expressions 
 



Logical (Boolean) Expressions 
 
PASTERP logical expressions return a Boolean value - TRUE or FALSE.    
 
The supported logical operators are AND, OR, XOR, NOT and parenthesis.    
 
The Primitive Boolean values are TRUE, FALSE, variables of a Boolean type, and functions 
that return a Boolean type.    
 
The operators in decreasing evaluation order are :    
 
 Primitives 
 Parenthesis 
 NOT 
 AND 
 XOR 
 OR 
 
Related Topics :    
 
 Variables 
 Numeric Expressions 
 String Expressions 
 



PASTERP Library 
 
The PASTERP Standard Library is based on the Standard PASCAL library, with some 
modifications needed to support the extended PASTERP features, and some 
procedures/functions missing because PASTERP does not support all the PASCAL features.    
 
Extended library will be supplied in a future version, and will support functions that are more
related to the PC environment.    
 
The library support is described in the following sections :    
 
 Standard Library 
 Extended Library 
 



PASTERP Standard Library 
 
The PASTERP Standard Library is based on the Standard PASCAL library, with some 
modifications needed to support the extended PASTERP features, and some 
procedures/functions missing because PASTERP does not support all the PASCAL features.    
 
The following functions and procedures are defined in the standard library :    
 
 Standard Library Function : ABS 
 Standard Library Function : APPEND 
 Standard Library Function : ARCCOS 
 Standard Library Function : ARCSIN 
 Standard Library Function : ARCTAN 
 Standard Library Function : ASSIGN 
 Standard Library Function : CHR 
 Standard Library Function : CLOSE 
 Standard Library Function : COPY 
 Standard Library Function : COS 
 Standard Library Function : COTAN 
 Standard Library Function : DEC 
 Standard Library Function : DELETE 
 Standard Library Function : EOF 
 Standard Library Function : INC 
 Standard Library Function : INSERT 
 Standard Library Function : LENGTH 
 Standard Library Function : LN 
 Standard Library Function : LOG10 
 Standard Library Function : LOG2 
 Standard Library Function : ORD 
 Standard Library Function : PI 
 Standard Library Function : POS 
 Standard Library Function : RANDOM 
 Standard Library Function : RESET 
 Standard Library Function : REWRITE 
 Standard Library Function : ROUND 
 Standard Library Function : SIN 
 Standard Library Function : SQR 
 Standard Library Function : SQRT 
 Standard Library Function : STR 
 Standard Library Function : TAN 
 Standard Library Function : TRUNC 
 Standard Library Function : VAL 
 Standard Library Function : EXP 
 
Related Topics :    
 Extended Library 
 



Standard Library Function : PI 
 
function pi : real;    
 
The PI function returns the PI value.    
 



Standard Library Function : EXP 
 
function exp(r : real) : real;    
 
Returns the exponent of (r). 
 



Standard Library Function : SIN 
 
function sin(r : real) : real;    
 
Returns the Sin of (r). 
 



Standard Library Function :
RANDOM 

 
function random(l : longint) : longint;    
 
Returns a LONGINT in the range 0 .. l . 
 



Standard Library Function : COS 
 
function cos(r : real) : real;    
 
Returns the Cos of (r). 
 



Standard Library Function : LN 
 
function ln(r : real) : real;    
 
Return the Ln of (r). 
 



Standard Library Function :
LOG10 

 
function log10(r : real) : real;    
 
Returns the log (base 10) of (r). 
 



Standard Library Function :
LOG2 

 
function log2(r : real) : real;    
 
Returns the log (base 2) of (r). 
 



Standard Library Function : ABS 
 
function abs(r : real) : real;    
 
Returns the absolute value of (r). 
 



Standard Library Function :
ARCTAN 

 
function arctan(r : real) : real;    
 
Returns the Arctan of (r). 
 



Standard Library Function : SQR 
 
function sqr(r : real) : real;    
 
Returns the square of (r). 
 



Standard Library Function :
SQRT 

 
function sqrt(r : real) : real;    
 
Returns the square root of (r). 
 



Standard Library Function : TAN 
 
function tan(r : real) : real;    
 
Returns the Tan of (r). 
 



Standard Library Function :
COTAN 

 
function cotan(r : real) : real;    
 
Returns the COTAN of (r). 
 



Standard Library Function :
ARCSIN 

 
function arcsin(r : real) : real;    
 
Returns the Arcsin of (r). 
 



Standard Library Function :
ARCCOS 

 
function arccos(r : real) : real;    
 
Returns the Arccos of (r). 
 



Standard Library Function : CHR 
 
function chr(b : byte) : char;    
 
Returns the CHAR representation of (b). 
 



Standard Library Function : ORD 
 
function ord(c : char) : byte;    
 
Returns the ordinal number (representation) of (c). 
 



Standard Library Function :
TRUNC 

 
function trunc(r : real) : longint;    
 
Returns (r), truncated. 
 



Standard Library Function :
ROUND 

 
function round(r : real) : longint;    
 
Returns (r), rounded. 
 



Standard Library Function :
COPY 

 
function copy(s : string, i : byte, l : byte) : string;    
 
Returns the substring of (s), that start and index (i), for (l) bytes. 
 



Standard Library Function :
LENGTH 

 
function length(s : string) : byte;    
 
Returns the length of (s). 
 



Standard Library Function :
INSERT 

 
function insert(s : string, var d : string, i : index);    
 
Inserts (s) into (d), after position (i). 
 



Standard Library Function :
DELETE 

 
procedure delete(var s : string, i : byte, c : byte) : char;    
 
Delete (c) bytes from position (i) of (s). 
 



Standard Library Function : POS 
 
function pos(s : string, d : string) : integer;    
 
Returns the position of (d) in (s), 0 if not found. 
 



Standard Library Function : VAL 
 
function val(s : string, var r : real) : integer;    
 
Returns the value of (s), in (r). If the function returns 0, the conversion was successful, 
otherwise it points to the index in (s), where the conversion failed.    
 



Standard Library Function : STR 
 
procedure str(r : real, var s : string);    
 
Returns the string representation of (r) in (s). 
 



Standard Library Function :
ASSIGN 

 
procedure assign(t : text, s : string);    
 
Associates the text file (t), with the file name specified in (s). 
 
Please note that PASTERP supports automatic assignment of a file name to a text variable 
during the variables definition.    
 
The following two code fragments are equivalent : 
 
Figure A :    
 
var 
                t : text; 
endvar 
                assign(t, "myfile.txt");              
 
 
Figure B :    
 
var 
                t : text = "myfile.txt"; 
endvar 
 



Standard Library Function :
RESET 

 
function reset(t : text) : byte;    
 
Resets (t) for input, and returns an error code. If the function returns 0, the reset operation 
was successful    
 



Standard Library Function :
CLOSE 

 
function close(t : text) : byte;    
 
Closes the text file (t), and returns an error code. If the function returns 0, no error occurred. 
 



Standard Library Function :
APPEND 

 
function append(t : text) : byte;    
 
Opens (t) for output, from the end of the file. Returns an error code. If the function returns 0,
no error occurred.    
 



Standard Library Function :
REWRITE 

 
function rewrite(t : text) : byte;    
 
Opens (t) for output, rewriting over any previous file with the same name. The function 
returns an error code, or 0 if no error occurred.    
 



Standard Library Function : EOF 
 
function eof(t : text) : Boolean;    
 
Returns TRUE if the file pointer of (t) is at the end of file. 
 



Standard Library Function : INC 
 
procedure inc(var v[, by : real]);    
 
Increments the variable (v) that must be of a numeric type. If the optional (by) parameter is 
specified, (v) is incremented using (by). Otherwise, (by) is assumed to be 1.    
 



Standard Library Function : DEC 
 
procedure dec(var v[, by : real]);    
 
Decrement the variable (v) (must be of a numeric type). If the optional (by) parameter is 
specified, (v) is decremented using (by). Otherwise, (by) is assumed to be 1.    
 



PASTERP Extended Library 
 
Extended library will be supplied in a future version, and will support functions that are more
related to the PC environment.    
 
The following functions and procedures are defined in the extended library :    
 
 
Related Topics :    
 Standard Library 
 



PASTERP Interface to host
language 

 
The PASTERP language is designed to be embedded as an extension interpreted language to
application. The first target for host embedding are Borland PASCAL applications. This 
section describes the PASCAL interface between a host application and the PASTERP objects. 
 
The PASTERP interface is described in the following sections :    
 
 Overview of PASTERP <-> PASCAL interface 
 Initializing a PASTERP instance 
 Registering Procedures and Functions 
 Extending the PASTERP syntax/system library 
 



Overview of PASTERP <->
PASCAL interface 

 
The PASTERP extension language is implemented as a hierarchy of PARSER object classes in 
Borland Pascal with Objects.    
 
The base object of the hierarchy is called basicParser, because it provides that basic 
operation of the PASTERP language interpreter.    
 
This object includes the code for scanning the input source files, building the internal data 
representations, and dispatching the code using a recursive decent parser.    
 
The most basic PASTERP enabled applications will initialize a basicParser object instance, 
attach a source file to it, and call it to execute macros at different points of the application's 
execution.    
 
The basicParser object class defines the interface used to register new functions and 
procedures to the run-time version of the parser.    
 
Future versions of the PASTERP development kit will offer extended parser object classes 
that will offer extended functionality. The extended library features that will appear in a 
future version of PASTERP, will be implemented as a descendent parser, that adds these 
functions. Please note that you can create descendent parsers with your application's 
specific functions with this version of the PASTERP development kit.    
 
Please note that the information presented in this electronic document is partial, and that 
the complete parser object class description is presented with the PASTERP Development Kit
documentation.    
 



Initializing a PASTERP instance 
 
The basicParser object class defines the following constructors and procedures used for 
initializing a PASTERP instance.    
 
            constructor init; 
            constructor initFile(const s : string); 
            procedure loadFile(const s : string); 
 
The init constructor initializes the basicParser internal data structures and run time tables.    
 
The initFile constructor calls init, and than calls loadFile.    
 
The loadFile procedure reads a source PASTERP file to the internal basicParser source 
structures, and build the preliminary procedure call structure.    
 



Registering Procedures and
Functions 

 
The basicParser object class defines the following methods that are used to register 
functions that are provided by the host application :    
 
 
            procedure registerProc(n : strID; returnType : word; 
                                                          procAddress : procedureVar); 
            procedure registerProcParm(n : strID; parmType : word; 
                                                                  byReference : Boolean); 
 
The registerProc method receives a name for the procedure (n), the return type of the 
procedure/function (returnType), and the address of the procedure that handles the function. 
 
The registerProcParm is used to define the parameters that the host application procedure 
needs to receive from the calling PASTERP procedure. The procedure name (n), the type of 
the parameter (parmType) and whether the parameter is passed by value or reference 
(byRefence) should be specified.    
 
If multiple parameters can be passed to the host application procedure, calls to the 
registerProcParm must be created in the order of the parameters that should be passed to 
the procedure.    
 
example :    
 
Let's assume that we are writing yet another text editor, and we want the extension 
language, implemented using PASTERP, to be able and call a special goto-position 
procedure, and a function that returns the current line the cursor is on.    
 
We will define the GOTOPOS procedure of our application to PASTERP using :    
 
                myParser.registerProc('gotopos', ftVoid, fnGotoPos); 
                myParser.registerProcParm('gotopos', ftLongint, false); 
                myParser.registerProcParm('gotopos', ftLongint, false); 
Here we define a function that returns void called gotopos, the function is implemented by 
an internal procedure in out application, called fnGotoPos    
 
We define two parameters of type longint to the procedure, and both of them are passed by 
value.    
 
We will now define the CURRENTLINE function of our application :    
 
                myParser.registerProc('currentline', ftLongint, fnCurrentLine); 
 
Here we defined a function called currentline that returns a longint value, and is 
implemented by a PASCAL procedure called fnCurrentLine.    
 
In our PASCAL code, that implements these functions, we use a pointer to an array of 
pointers called funcParm to access the parameters passed to use by the PASTERP code, and 
return the result of the PASCAL function (if any), in a global variable called funcReusltTYPE, 
where TYPE is the type the function returns.    



 
Example :    
 
procedure fnGotoPos; 
begin 
                myEditor.gotoPos(longPtr(funcParm^[1])^, longPtr(funcParm^[2])^); 
                funcSuccess := true; 
end; { fnGotoPos } 
 
In this procedure we called our application's myEditor object's gotoPos method, with two 
longint parameters that were passed through funcParm. Notice that a type cast to the 
appropriate parameter type was needed.    
 
The funcSuccess global variable is used to inform the PASTERP interpreter that the function 
was executed with no errors.    
 
Example :    
 
procedure fnCurrentLine; 
begin 
                funcResultLong := myEditor.getCurrentLine; 
                funcSuccess := true; 
end; { fnCurrentLine } 
 
In here we return a result to funcResultLong, using a call to our editor's object 
getCurrentLine method.    
 
After we defined these functions as new functions for the PASTERP interpreter, our users can
write the following code in the PASTERP language that will do something :    
 
procedure whatever 
                if (currentLine < 30) 
                                gotoPos(30, 1) 
                endif 
endproc 
 
Please note that this topic presented just the basics of adding functions and procedures to 
the PASTERP run-time, a complete documentation is available with the PASTERP 
development kit documentation.    
 



Extending the PASTERP
syntax/system library 

 
There are three ways to extend the PASTERP syntax: modification of the source code, 
overriding the basicParser parse method and registering system procedures.    
 
Modification of the PASTERP source code is available to people that purchase the PASTERP 
source code.    
 
Overriding the parse method of the basicParser is a technique that requires a description of 
the recursive decent implementation of the basicParser object class, and the way the parser 
maintains scope parameters. This discussion is beyond the scope of this on-line document, 
but it appears in the PASTERP development kit documentation.    
 
System Procedures are special procedures that are implemented as methods of a parser 
object that is a descendent of the basicParser object class.    
 
The methods should registered as system procedures, and assigned a unique procedure id, 
that will be used during the dispatching of the methods.    
 
The power that a system procedure has that a standard registered procedure lacks, is that 
the system procedure can use all the basicParser scanning methods, to implement 
lookahead if needed, and to perform special functions according to the type of the 
arguments.    
 
In the basicParser object class, system library procedures such as inc, and reset are 
implemented as system procedures.    
 
The inc procedure was implemented as a system procedure, because the PASTERP syntax 
allows inc to be either    
 
inc(myVar) 
 
or 
 
inc(myVar, 12) 
 
Inc uses the basicParser peekToken, getToken and getNumExpr methods to determine 
whether myVar should be incremented by 1 (syntax 1), or by 12 (syntax 2).    
 
The reset function was implemented as a system procedure, because in a future version of 
PASTERP that will support both TEXT and Binary files (and not just TEXT files as of today), 
reset(f) will be able to perform different functions according to the type of f, after accessing 
basicParser's internal vars table.    
 
The complete discussion of extending PASTERP by registering and writing system procedures
is included with the PASTERP development kit.    
 






